KCa3.1 channel inhibition sensitizes malignant gliomas to temozolomide treatment
نویسندگان
چکیده
Malignant gliomas are among the most frequent and aggressive cerebral tumors, characterized by high proliferative and invasive indexes. Standard therapy for patients, after surgery and radiotherapy, consists of temozolomide (TMZ), a methylating agent that blocks tumor cell proliferation. Currently, there are no therapies aimed at reducing tumor cell invasion. Ion channels are candidate molecular targets involved in glioma cell migration and infiltration into the brain parenchyma. In this paper we demonstrate that: i) blockade of the calcium-activated potassium channel KCa3.1 with TRAM-34 has co-adjuvant effects with TMZ, reducing GL261 glioma cell migration, invasion and colony forming activity, increasing apoptosis, and forcing cells to pass the G2/M cell cycle phase, likely through cdc2 de-phosphorylation; ii) KCa3.1 silencing potentiates the inhibitory effect of TMZ on glioma cell viability; iii) the combination of TMZ/TRAM-34 attenuates the toxic effects of glioma conditioned medium on neuronal cultures, through a microglia dependent mechanism since the effect is abolished by clodronate-induced microglia killing; iv) TMZ/TRAM-34 co-treatment increases the number of apoptotic tumor cells, and the mean survival time in a syngeneic mouse glioma model (C57BL6 mice implanted with GL261 cells); v) TMZ/TRAM-34 co-treatment reduces cell viability of GBM cells and cancer stem cells (CSC) freshly isolated from patients.Taken together, these data suggest a new therapeutic approach for malignant glioma, targeting both glioma cell proliferating and migration, and demonstrate that TMZ/TRAM-34 co-treatment affects both glioma cells and infiltrating microglia, resulting in an overall reduction of tumor cell progression.
منابع مشابه
The unfolded protein response regulator GRP78/BiP as a novel target for increasing chemosensitivity in malignant gliomas.
Poor chemosensitivity and the development of chemoresistance remain major obstacles to successful chemotherapy of malignant gliomas. GRP78 is a key regulator of the unfolded protein response (UPR). As a Ca2+-binding molecular chaperone in the endoplasmic reticulum (ER), GRP78 maintains ER homeostasis, suppresses stress-induced apoptosis, and controls UPR signaling. We report here that GRP78 is ...
متن کاملPerifosine inhibits multiple signaling pathways in glial progenitors and cooperates with temozolomide to arrest cell proliferation in gliomas in vivo.
Perifosine is an oral Akt inhibitor which exerts a marked cytotoxic effect on human tumor cell lines, and is currently being tested in several phase II trials for treatment of major human cancers. However, the efficacy of perifosine in human gliomas has not been established. As Akt is activated in approximately 70% of human glioblastomas, we investigated the impact of perifosine on glia in cult...
متن کاملLevetiracetam enhances p53-mediated MGMT inhibition and sensitizes glioblastoma cells to temozolomide.
Antiepileptic drugs (AEDs) are frequently used to treat seizures in glioma patients. AEDs may have an unrecognized impact in modulating O(6)-methylguanine-DNA methyltransferase (MGMT), a DNA repair protein that has an important role in tumor cell resistance to alkylating agents. We report that levetiracetam (LEV) is the most potent MGMT inhibitor among several AEDs with diverse MGMT regulatory ...
متن کاملPoly(ADP-ribose) polymerase-1 inhibition reverses temozolomide resistance in a DNA mismatch repair-deficient malignant glioma xenograft.
Temozolomide is a DNA-methylating agent used in the treatment of malignant gliomas. In this study, we have examined if inhibition of poly(ADP-ribose) polymerase (PARP) could increase the cytotoxicity of temozolomide, particularly in cells deficient in DNA mismatch repair. Athymic mice, transplanted with mismatch repair-proficient [D-245 MG] or deficient [D-245 MG (PR)] xenografts, were treated ...
متن کاملIFN-B Down-Regulates the Expression of DNA Repair Gene MGMT and Sensitizes Resistant Glioma Cells to Temozolomide
Alkylating agents, such as temozolomide, are among the most effective cytotoxic agents used for malignant gliomas, but responses remain very poor. The DNA repair protein Omethylguanine-DNA methyltransferase (MGMT) plays an important role in cellular resistance to alkylating agents. IFN-B can act as a drug sensitizer, enhancing toxicity against a variety of neoplasias, and is widely used in comb...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2016